login
A273480
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood.
1
1, 5, 30, 79, 160, 281, 450, 675, 964, 1325, 1766, 2295, 2920, 3649, 4490, 5451, 6540, 7765, 9134, 10655, 12336, 14185, 16210, 18419, 20820, 23421, 26230, 29255, 32504, 35985, 39706, 43675, 47900, 52389, 57150, 62191, 67520, 73145, 79074, 85315, 91876, 98765
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 23 2016: (Start)
a(n) = (4*n^3+12*n^2+11*n-12)/3 for n>0.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4.
G.f.: (1+x+16*x^2-15*x^3+5*x^4) / (1-x)^4.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=737; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A016754.
Sequence in context: A152745 A187275 A344070 * A164015 A128302 A258582
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 23 2016
STATUS
approved