login
Primes p such that at least one of 3511*p or 3511*p^2 is a Poulet number, i.e., a term of A001567.
1

%I #10 Aug 30 2016 10:41:19

%S 3511,10531,1024921,1969111,4633201,409251961,21497866557571,

%T 194900834792501371,4242734772486358591,85488365519409100951,

%U 255375215316698521591,1439538040790707946401,5302306226370307681801,2728334536034592865339299805712535332071,1514527568177848809210967221069334182785475908756709327091,559791068131697034376217936561708451475280017605178661418575551,656640320787712008058581244241126148909602076298405712103045387152988908318802087128873347971063698441918022286945981375193401,25006596829256741460214169653933852849128490077459890197421900490545433220443136638425782879171530372521984642165350019685875922245867185516694881

%N Primes p such that at least one of 3511*p or 3511*p^2 is a Poulet number, i.e., a term of A001567.

%C The prime factors of 2^3510-1 that are congruent to 1 modulo 1755 (the multiplicative order of 2 modulo 3511). - _Max Alekseyev_, Aug 30 2016

%H G. P. Michon, <a href="http://www.numericana.com/answer/pseudo.htm#wieferich">Wieferich primes and some of their Poulet multiples</a>

%H Factordb, <a href="http://factordb.com/index.php?query=2%5E3510-1">Factorization of 2^3510-1</a>

%o (PARI) forprime(p=1, , if(Mod(2, 3511*p)^(3511*p-1)==1 || Mod(2, 3511*p^2)^(3511*p^2-1)==1, print1(p, ", ")))

%Y Cf. A001220, A001567, A273471.

%K nonn,fini,full

%O 1,1

%A _Felix Fröhlich_, May 23 2016

%E Terms a(8) onward from _Max Alekseyev_, Aug 30 2016