login
A273471
Primes p such that at least one of 1093*p or 1093*p^2 is a Poulet number, i.e., a term of A001567.
1
1093, 4733, 21841, 503413, 1948129, 112901153, 23140471537, 467811806281, 4093204977277417, 8861085190774909, 556338525912325157, 86977595801949844993, 275700717951546566946854497, 3194753987813988499397428643895659569
OFFSET
1,1
COMMENTS
The prime factors of 2^1092-1 that are congruent to 1 modulo 364 (the multiplicative order of 2 modulo 1093). - Max Alekseyev, Aug 30 2016
PROG
(PARI) forprime(p=1, , if(Mod(2, 1093*p)^(1093*p-1)==1 || Mod(2, 1093*p^2)^(1093*p^2-1)==1, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Felix Fröhlich, May 23 2016
STATUS
approved