Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 28 2017 12:12:48
%S 1,3,95,5595,484729,55545735,7923937307,1353285904971,269240651261153,
%T 61157779792168059,15617503320899550135,4429016799173481942427,
%U 1381112305978592892946825,469689278931628969590283855,173002815169302537782725771395
%N Number of endofunctions on [2n] with exactly n cycles.
%H Alois P. Heinz, <a href="/A273442/b273442.txt">Table of n, a(n) for n = 0..288</a>
%F a(n) = (2*n)!/n! * [x^(2*n)] (-log(1+LambertW(-x)))^n.
%F a(n) = A060281(2n,n).
%F a(n) ~ c * d^n * n^(n-1/2), where d = 2^(4-r) * exp(1-r) * (2-r)^(r-2) * log(s) / (1-1/s)^r = 10.40858458700790823344027277763248832..., where r = 1.2672171362228848078038115564503589940694831794020694762759870935... is the root of the equation r*log(s) * (-1 + (r-s)* log((2*(s-1))/(s*(2-r)))) = 1 - s, where s = -r*LambertW(-1, -exp(-1/r)/r) = 1.5782614856055967129193228312616913... and c = 0.336740238865974324583136447665761... - _Vaclav Kotesovec_, Nov 01 2016, extended Aug 28 2017
%t Table[(2*n)!/n! * SeriesCoefficient[(-Log[1+LambertW[-x]])^n, {x, 0, 2*n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 01 2016 *)
%t Flatten[{1, Table[Sum[Binomial[2*n-1, k] * (2*n)^(2*n-1-k) * Abs[StirlingS1[k+1, n]], {k, 0, 2*n-1}], {n, 1, 20}]}] (* _Vaclav Kotesovec_, Nov 01 2016 *)
%Y Cf. A060281.
%K nonn
%O 0,2
%A _Alois P. Heinz_, May 22 2016