OFFSET
0,2
COMMENTS
The author proved in arXiv:1604.06723 that for each c = 1, 4 any natural number can be written as c*x^6 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers. Thus a(n) > 0 for all n = 0,1,2,....
We note that a(n) = 1 for the following values of n not divisible by 2^6: 7, 8, 15, 16, 23, 24, 31, 32, 40, 47, 48, 56, 71, 79, 92, 112, 143, 176, 191, 240, 304, 368, 560, 624, 688, 752, 1072, 1136, 1456, 1520, 1840, 1904, 2608, 2672, 3760, 3824, 6512, 6896.
For more conjectural refinements of Lagrange's four-square theorem, one may consult the author's preprint arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016-2017.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
EXAMPLE
a(7) = 1 since 7 = 1^6 + 1^2 + 1^2 + 2^2 with 1 = 1 < 2.
a(8) = 1 since 8 = 0^6 + 0^2 + 2^2 + 2^2 with 0 < 2 = 2.
a(15) = 1 since 15 = 1^6 + 1^2 + 2^2 + 3^2 with 1 < 2 < 3.
a(16) = 1 since 16 = 0^6 + 0^2 + 0^2 + 4^2 with 0 = 0 < 4.
a(56) = 1 since 56 = 0^6 + 2^2 + 4^2 + 6^2 with 2 < 4 < 6.
a(71) = 1 since 71 = 1^6 + 3^2 + 5^2 + 6^2 with 3 < 5 < 6.
a(79) = 1 since 79 = 1^6 + 2^2 + 5^2 + 7^2 with 2 < 5 < 7.
a(92) = 1 since 92 = 1^6 + 1^2 + 3^2 + 9^2 with 1 < 3 < 9.
a(143) = 1 since 143 = 1^6 + 5^2 + 6^2 + 9^2 with 5 < 6 < 9.
a(191) = 1 since 191 = 1^6 + 3^2 + 9^2 + 10^2 with 3 < 9 < 10.
a(624) = 1 since 624 = 2^6 + 4^2 + 12^2 + 20^2 with 4 < 12 < 20.
a(2672) = 1 since 2672 = 2^6 + 4^2 + 36^2 + 36^2 with 4 < 36 = 36.
a(3760) = 1 since 3760 = 0^6 + 4^2 + 12^2 + 60^2 with 4 < 12 < 60.
a(3824) = 1 since 3824 = 2^6 + 4^2 + 12^2 + 60^2 with 4 < 12 < 60.
a(6512) = 1 since 6512 = 2^6 + 12^2 + 52^2 + 60^2 with 12 < 52 < 60.
a(6896) = 1 since 6896 = 2^6 + 36^2 + 44^2 + 60^2 with 36 < 44 < 60.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^6-y^2-z^2], r=r+1], {x, 0, n^(1/6)}, {y, 0, Sqrt[(n-x^6)/3]}, {z, y, Sqrt[(n-x^6-y^2)/2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
CROSSREFS
Cf. A000118, A000290, A001014, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273432, A273568.
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 22 2016
STATUS
approved