login
A273429
Number of ordered ways to write n as x^6 + y^2 + z^2 + w^2, where x,y,z,w are nonnegative integers with y <= z <= w.
12
1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 3, 4, 3, 2, 2, 2, 1, 1, 3, 4, 4, 2, 2, 3, 1, 1, 3, 4, 3, 3, 3, 3, 2, 1, 4, 4, 2, 2, 3, 3, 1, 1, 3, 5, 5, 3, 3, 5, 3, 1, 3, 3, 3, 2, 2, 4, 2, 2, 5, 7, 5, 4, 5, 4, 1, 3, 6, 6, 6, 4, 4, 4, 1, 2
OFFSET
0,2
COMMENTS
The author proved in arXiv:1604.06723 that for each c = 1, 4 any natural number can be written as c*x^6 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers. Thus a(n) > 0 for all n = 0,1,2,....
We note that a(n) = 1 for the following values of n not divisible by 2^6: 7, 8, 15, 16, 23, 24, 31, 32, 40, 47, 48, 56, 71, 79, 92, 112, 143, 176, 191, 240, 304, 368, 560, 624, 688, 752, 1072, 1136, 1456, 1520, 1840, 1904, 2608, 2672, 3760, 3824, 6512, 6896.
For more conjectural refinements of Lagrange's four-square theorem, one may consult the author's preprint arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016-2017.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
EXAMPLE
a(7) = 1 since 7 = 1^6 + 1^2 + 1^2 + 2^2 with 1 = 1 < 2.
a(8) = 1 since 8 = 0^6 + 0^2 + 2^2 + 2^2 with 0 < 2 = 2.
a(15) = 1 since 15 = 1^6 + 1^2 + 2^2 + 3^2 with 1 < 2 < 3.
a(16) = 1 since 16 = 0^6 + 0^2 + 0^2 + 4^2 with 0 = 0 < 4.
a(56) = 1 since 56 = 0^6 + 2^2 + 4^2 + 6^2 with 2 < 4 < 6.
a(71) = 1 since 71 = 1^6 + 3^2 + 5^2 + 6^2 with 3 < 5 < 6.
a(79) = 1 since 79 = 1^6 + 2^2 + 5^2 + 7^2 with 2 < 5 < 7.
a(92) = 1 since 92 = 1^6 + 1^2 + 3^2 + 9^2 with 1 < 3 < 9.
a(143) = 1 since 143 = 1^6 + 5^2 + 6^2 + 9^2 with 5 < 6 < 9.
a(191) = 1 since 191 = 1^6 + 3^2 + 9^2 + 10^2 with 3 < 9 < 10.
a(624) = 1 since 624 = 2^6 + 4^2 + 12^2 + 20^2 with 4 < 12 < 20.
a(2672) = 1 since 2672 = 2^6 + 4^2 + 36^2 + 36^2 with 4 < 36 = 36.
a(3760) = 1 since 3760 = 0^6 + 4^2 + 12^2 + 60^2 with 4 < 12 < 60.
a(3824) = 1 since 3824 = 2^6 + 4^2 + 12^2 + 60^2 with 4 < 12 < 60.
a(6512) = 1 since 6512 = 2^6 + 12^2 + 52^2 + 60^2 with 12 < 52 < 60.
a(6896) = 1 since 6896 = 2^6 + 36^2 + 44^2 + 60^2 with 36 < 44 < 60.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^6-y^2-z^2], r=r+1], {x, 0, n^(1/6)}, {y, 0, Sqrt[(n-x^6)/3]}, {z, y, Sqrt[(n-x^6-y^2)/2]}]; Print[n, " ", r]; Continue, {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 22 2016
STATUS
approved