login
A273408
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 675", based on the 5-celled von Neumann neighborhood.
1
1, 6, 27, 72, 149, 266, 431, 652, 937, 1294, 1731, 2256, 2877, 3602, 4439, 5396, 6481, 7702, 9067, 10584, 12261, 14106, 16127, 18332, 20729, 23326, 26131, 29152, 32397, 35874, 39591, 43556, 47777, 52262, 57019, 62056, 67381, 73002, 78927, 85164, 91721, 98606
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 22 2016: (Start)
a(n) = (4*n^3+12*n^2-n+3)/3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
G.f.: (1+2*x+9*x^2-4*x^3) / (1-x)^4. (End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=675; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A078371.
Sequence in context: A167469 A190623 A305158 * A085788 A027276 A101970
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 21 2016
STATUS
approved