%I #6 May 21 2016 23:26:47
%S 1,2,3,2,2,3,3,2,1,3,4,2,1,2,2,2,2,3,5,2,3,3,2,1,1,4,5,4,2,2,4,3,3,3,
%T 6,2,6,5,3,3,3,7,6,2,2,5,4,1,2,3,7,6,8,4,5,5,2,4,5,2,3,5,3,4,2,5,9,4,
%U 5,4,5,1,3,5,4,5,5,4,2,3,3
%N Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x + 24*y a square, where x,y,z,w are nonnegative integers with z <= w.
%C Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 8, 12, 23, 24, 47, 71, 168, 344, 632).
%C For more conjectural refinements of Lagrange's four-square theorem, one may consult arXiv:1604.06723.
%H Zhi-Wei Sun, <a href="/A273404/b273404.txt">Table of n, a(n) for n = 0..10000</a>
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.GM], 2016.
%e a(8) = 1 since 8 = 0^2 + 0^2 + 2^2 + 2^2 with 0 + 24*0 = 0^2.
%e a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 + 24*1 = 5^2.
%e a(23) = 1 since 23 = 1^2 + 2^2 + 3^2 + 3^2 with 1 + 24*2 = 7^2.
%e a(24) = 1 since 24 = 4^2 + 0^2 + 2^2 + 2^2 with 4 + 24*0 = 2^2.
%e a(47) = 1 since 47 = 1^2 + 1^2 + 3^2 + 6^2 with 1 + 24*1 = 5^2.
%e a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 + 24*5 = 11^2.
%e a(168) = 1 since 168 = 4^2 + 4^2 + 6^2 + 10^2 with 4 + 24*4 = 10^2.
%e a(344) = 1 since 344 = 4^2 + 0^2 + 2^2 + 18^2 with 4 + 24*0 = 2^2.
%e a(632) = 1 since 632 = 0^2 + 6^2 + 14^2 + 20^2 with 0 + 24*6 = 12^2.
%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
%t Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x+24y],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[(n-x^2-y^2)/2]}];Print[n," ",r];Label[aa];Continue,{n,0,80}]
%Y Cf. A000118, A000290, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302.
%K nonn
%O 0,2
%A _Zhi-Wei Sun_, May 21 2016