OFFSET
0,4
COMMENTS
Next term, a(13), which has 137 digits, is too large to include. Counterpart to A273397.
The number of digits of a(n) grows fast exceeding 10^6 for n=32. It grows faster than Fibonacci(n-2) but slower than Fibonacci(n) or Fibonacci(n-1) and even slower than the same number for A273397 which grows faster than Fibonacci(n).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..17
EXAMPLE
For n=4, a(4)=Catalan(Fibonacci(4))=Catalan(3)=5.
MAPLE
a:= n-> (f-> binomial(2*f, f)/(f+1))((<<0|1>, <1|1>>^n)[1, 2]):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 20 2017
MATHEMATICA
CatalanNumber[Fibonacci[Range[0, 12]]]
Table[CatalanNumber[Fibonacci[n]], {n, 0, 12}]
PROG
(PARI) for(n=0, 12, fn=fibonacci(n); print1(binomial(2*fn, fn)/(fn+1) ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Waldemar Puszkarz, May 21 2016
STATUS
approved