%I #10 Jul 26 2024 21:16:43
%S 1,6,23,72,153,274,443,668,957,1318,1759,2288,2913,3642,4483,5444,
%T 6533,7758,9127,10648,12329,14178,16203,18412,20813,23414,26223,29248,
%U 32497,35978,39699,43668,47893,52382,57143,62184,67513,73138,79067,85308,91869,98758
%N Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A273386/b273386.txt">Table of n, a(n) for n = 0..128</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, May 21 2016: (Start)
%F a(n) = (11*n)/3+4*n^2+(4*n^3)/3-11 for n>1.
%F a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>5.
%F G.f.: (1+2*x+5*x^2+12*x^3-20*x^4+8*x^5) / (1-x)^4.
%F (End)
%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
%t code=659; stages=128;
%t rule=IntegerDigits[code,2,10];
%t g=2*stages+1; (* Maximum size of grid *)
%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
%t ca=a;
%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
%t PrependTo[ca,a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k=(Length[ca[[1]]]+1)/2;
%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
%t Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)
%Y Cf. A273384.
%K nonn,easy
%O 0,2
%A _Robert Price_, May 21 2016