This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273355 Numbers n such that n - 47, n - 1, n + 1, n + 47 are consecutive primes. 1
 15370470, 15462870, 18216510, 23726160, 30637050, 31054740, 38907060, 39220080, 44499900, 44678190, 60563100, 66248550, 86219910, 87095190, 87948780, 93773970, 96802860, 103011990, 105953760, 105978330, 106960410, 111219990, 116281770 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is a subsequence of A014574 (average of twin prime pairs), A249674 (divisible by 30) and A256753. The numbers n - 47 and n + 1 belong to A134122 (p such that p + 46 is the next prime). The numbers n - 47 and n - 1 belong to primes p such that p and p + 48 are primes. LINKS Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Twin Primes EXAMPLE 15370470 is the average of the four consecutive primes 15370423, 15370469, 15370471, 15370517. 15462870 is the average of the four consecutive primes 15462823, 15462869, 15462871, 15462917. PROG (Python) from sympy import isprime, prevprime, nextprime for i in range(0, 160000001, 6): ..if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-47 and nextprime(i+1) == i+47: print (i, end=', ') (PARI) is(n)=isprime(n-1) && isprime(n+1) && precprime(n-2)==n-47 && nextprime(n+2)==n+47 \\ Charles R Greathouse IV, Jun 08 2016 CROSSREFS Cf. A014574, A077800 (twin primes), A249674, A256753. Sequence in context: A234480 A186616 A128480 * A207797 A186050 A121840 Adjacent sequences:  A273352 A273353 A273354 * A273356 A273357 A273358 KEYWORD nonn AUTHOR Karl V. Keller, Jr., May 20 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 07:51 EDT 2019. Contains 322381 sequences. (Running on oeis4.)