login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273341 Numbers n such that n^2+k-1 is the sum of two nonzero squares in exactly k ways for all k = 1, 2, 3. 0
3444, 25456, 35860, 55544, 78936, 79740, 93660, 102612, 110676, 116788, 122512, 131808, 145680, 182624, 184936, 194184, 235848, 263988, 267060, 270480, 273740, 277416, 284352, 294756, 305160, 308676, 343356, 353760, 360696, 384924, 410404, 416136, 465844 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence lists square roots of square terms of A273318.

Numbers n such that (n+k-1)^2 is the sum of two nonzero squares in exactly k ways for all k = 1, 2, 3 are 11998, 40748, 54248, ...

LINKS

Table of n, a(n) for n=1..33.

EXAMPLE

3444 is a term because;

3444^2 = 756^2 + 3360^2.

3444^2 + 1 = 681^2 + 3376^2 = 1^2 + 3444^2.

3444^2 + 2 = 83^2 + 3443^2 = 1547^2 + 3077^2 = 1987^2 + 2813^2.

MATHEMATICA

nR[n_] := (SquaresR[2, n] + Plus @@ Pick[{-4, 4}, IntegerQ /@ Sqrt[{n, n/2} ]])/8; Select[ Range[ 10^5], nR[#^2] == 1 && nR[#^2 + 1] == 2 && nR[#^2 + 2] == 3 &] (* Giovanni Resta, May 20 2016 *)

PROG

(PARI) is(n, k) = {nb = 0; lim = sqrtint(n); for (x=1, lim, if ((n-x^2 >= x^2) && issquare(n-x^2), nb++); ); nb == k; }

isok(n) = is(n^2, 1) && is(n^2+1, 2) && is(n^2+2, 3);

CROSSREFS

Cf. A273318.

Sequence in context: A254086 A324679 A324680 * A107537 A260500 A202644

Adjacent sequences:  A273338 A273339 A273340 * A273342 A273343 A273344

KEYWORD

nonn

AUTHOR

Altug Alkan, May 20 2016

EXTENSIONS

a(7)-a(33) from Giovanni Resta, May 20 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 22:31 EST 2019. Contains 329046 sequences. (Running on oeis4.)