login
A273319
a(n) = ((2*n+1)^(n+1) + (-1)^n)/(n+1)^2.
1
2, 2, 14, 150, 2362, 49210, 1280582, 40045166, 1464047858, 61310662578, 2894855376382, 152184891889030, 8817255144288554, 558260148630165098, 38351949989325264182, 2841496569324942436830
OFFSET
0,1
COMMENTS
When searching for the smallest k such that n^k + 1 is not squarefree, I noticed that if n is even then n^(n+1) + 1 is not squarefree, and if n is of the form 4*j + 1 (j>0) then n^((n+1)/2) + 1 is not squarefree.
FORMULA
a(n) = Sum_{k = 0..n} (-1)^(n - k)*2^(k+1)*(n+1)^(k-1)*C(n+1, n - k).
MATHEMATICA
Table[((2n + 1)^(n + 1) + (-1)^n)/(n + 1)^2, {n, 0, 15}] (* Alonso del Arte, May 19 2016 *)
CROSSREFS
Cf. A081215.
Sequence in context: A333372 A350923 A291376 * A009773 A325912 A365086
KEYWORD
nonn,easy
AUTHOR
Gionata Neri, May 19 2016
STATUS
approved