OFFSET
1,1
COMMENTS
For an integer n>0 and not the unity we define DTD(n) to be the difference table of the divisors of n. We say that DTD(n) is positive if all entries in the table are positive and we call DTD(n) monotone if all rows and all columns of the table are nondecreasing (reading from left to right and from top to bottom).
EXAMPLE
159 is in this sequence because the DTD of 159 has only positive entries but not all columns are nondecreasing:
[ 1 3 53 159]
[ 2 50 106]
[ 48 56]
[ 8]
PROG
(Sage)
def is_A273199(n):
D = divisors(n)
T = matrix(ZZ, len(D))
for (m, d) in enumerate(D):
T[0, m] = d
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
if T[m-k, k] <= 0: return False
non_decreasing = lambda L: all(x<=y for x, y in zip(L, L[1:]))
b = True
for k in range(0, len(D)-1):
b &= non_decreasing(T.row(k)[:len(D)-k])
b &= non_decreasing(T.column(k)[:len(D)-k])
if not b: return True
return False
print([n for n in range(1, 600) if is_A273199(n)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 17 2016
STATUS
approved