login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273189 a(n) is the third number in a triple consisting of 3 numbers, which when squared are part of a right diagonal of a magic square of squares. 3
51, 401, 2451, 14401, 84051, 490001, 2856051, 16646401, 97022451, 565488401, 3295908051, 19209960001, 111963852051, 652573152401, 3803475062451, 22168277222401, 129206188272051, 753068852410001, 4389206926188051, 25582172704718401, 149103829302122451 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The multiplying factor 6 (in the recursion formulas below) appears to come from the ratio of b(1)/b(0) of the sequence. Each of the lines of tables (V vs VII) or (VI vs VIII) in oddwheel.com/ImaginaryB.html generates this factor.

k is obtained from the difference of the offsets of two relate sequences. this one, (II), starting at 51 and a second, (I), at 99 (to be submitted separately). Thus, k =[Ic(n)- IIc(n)]*2. When n=0, Ic(0)=99 and IIc(0)=51 giving the value for k of (99-51)*2=96. Furthermore, k is the same constant number for any value of n.

The differences between number in the sequence are identical in both of the related sequences.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

E. Gutierrez,Recursion Methods to Generate New Integer Sequences (Part VIF)

E. Gutierrez, Table of Tuples and Use of Magic Ratio for Tuple Conversion (Part IB)

E. Gutierrez, Table of Tuples for Square of Squares (Part IC)

Index entries for linear recurrences with constant coefficients, signature (7,-7,1).

FORMULA

a(0)= 51, a(1)= 401, a(n+1)= a(n)*6 - a(n-1) + k where k=96.

From Colin Barker, May 18 2016: (Start)

a(n) = (-24+25/2*(3-2*sqrt(2))^(1+n)+25/2*(3+2*sqrt(2))^(1+n)).

a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>2.

G.f.: (51+44*x+x^2) / ((1-x)*(1-6*x+x^2)).

(End)

EXAMPLE

a(2)= 401*6 - (51 - 96)= 2451;

a(3)= 2451*6 - (401 - 96)= 14401;

a(4)= 14401*6 - (2451 - 96)= 84051.

MATHEMATICA

CoefficientList[Series[(51 + 44 x + x^2)/((1 - x) (1 - 6 x + x^2)), {x, 0, 20}], x] (* Michael De Vlieger, May 18 2016 *)

PROG

(PARI) Vec((51+44*x+x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Colin Barker, May 18 2016

CROSSREFS

Cf. A178218, A273182, A273187.

Sequence in context: A165087 A152579 A083669 * A222910 A259692 A204215

Adjacent sequences:  A273186 A273187 A273188 * A273190 A273191 A273192

KEYWORD

nonn,easy

AUTHOR

Eddie Gutierrez, May 17 2016

EXTENSIONS

More terms from Colin Barker, May 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 03:06 EST 2019. Contains 320364 sequences. (Running on oeis4.)