OFFSET
0,3
COMMENTS
The discriminator of a finite sequence is the least positive integer k such that all of its terms are pairwise incongruent, modulo k. Here the n-th term of the sequence is the discriminator of binomial(n, 0), binomial(n,1), ..., binomial(n,t) where t = floor(n/2).
It appears that a(2^k-1) = 2^k for k >= 3. - Robert Israel, May 15 2016
LINKS
Robert Israel, Table of n, a(n) for n = 0..1000
MAPLE
discriminator:= proc(L)
local n, k;
n:= nops(L);
for k from n do if nops (L mod k) =n then return k fi od:
end proc;
seq(discriminator({seq(binomial(n, j), j=0..floor(n/2))}), n=0..100); # Robert Israel, May 15 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, May 15 2016
STATUS
approved