OFFSET
1,6
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Wikipedia, Theta function
FORMULA
Equals (1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma(3/4)).
EXAMPLE
1.0001613990351406940215020703893995738875083912423752893728...
MAPLE
evalf((1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * GAMMA(3/4)), 120);
MATHEMATICA
RealDigits[EllipticTheta[3, 0, Exp[-3*Pi]], 10, 105][[1]]
RealDigits[(1 + 2/Sqrt[3])^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma[3/4]), 10, 105][[1]]
PROG
(PARI) sqrtn((2/sqrt(3)+1)*Pi/3, 4)/gamma(3/4) \\ Charles R Greathouse IV, Jun 06 2016
(Magma) C<i> := ComplexField(); (1+2/Sqrt(3))^(1/4)*Pi(C)^(1/4)/(3^(1/4) *Gamma(3/4)) // G. C. Greubel, Jan 07 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 14 2016
STATUS
approved