OFFSET
1,1
LINKS
Colin Barker, Table of n, a(n) for n = 1..800
Index entries for linear recurrences with constant coefficients, signature (16,-1).
FORMULA
O.g.f.: x*(2 + 2*x)/(1 - 16*x + x^2).
E.g.f.: 2*(1 + (3*sqrt(7)*sinh(3*sqrt(7)*x) - 7*cosh(3*sqrt(7)*x))*exp(8*x)/7). - Ilya Gutkovskiy, May 14 2016
a(n) = 16*a(n-1) - a(n-2).
a(n) = (-(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/sqrt(7). - Colin Barker, May 14 2016
MATHEMATICA
LinearRecurrence[{16, -1}, {2, 34}, 30]
PROG
(Magma) I:=[2, 34]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]];
(PARI) Vec(x*(2+2*x)/(1-16*x+x^2) + O(x^50)) \\ Colin Barker, May 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 14 2016
STATUS
approved