This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273050 Numbers n such that ror(n) XOR rol(n) = n, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator. 0
 0, 5, 6, 45, 54, 365, 438, 2925, 3510, 23405, 28086, 187245, 224694, 1497965, 1797558, 11983725, 14380470, 95869805, 115043766, 766958445, 920350134, 6135667565, 7362801078, 49085340525, 58902408630, 392682724205, 471219269046 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA Conjectures from Colin Barker, May 22 2016: (Start) a(n) = (-11+(-1)^n+2^(-1/2+(3*n)/2)*(3-3*(-1)^n+5*sqrt(2)+5*(-1)^n*sqrt(2)))/14. a(n) = 5*(2^(3*n/2)-1)/7 for n even. a(n) = 3*(2^((3*n)/2-1/2)-2)/7 for n odd. a(n) = 9*a(n-2)-8*a(n-4) for n>4. G.f.: x^2*(5+6*x) / ((1-x)*(1+x)*(1-8*x^2)). (End) MATHEMATICA ok[n_] := Block[{x = IntegerDigits[n, 2]}, x == BitXor @@@ Transpose@ {RotateLeft@ x, RotateRight@ x}]; Select[ Range[0, 10^5], ok] (* Giovanni Resta, May 14 2016 *) ok[n_] := Block[{x = IntegerDigits[n, 2]}, x == BitXor @@@ Transpose[ {RotateLeft[x], RotateRight[x]}]]; Select[LinearRecurrence[{0, 9, 0, -8}, {0, 5, 6, 45}, 100], ok] (* Jean-François Alcover, May 22 2016, after Giovanni Resta *) PROG (Python) def ROR(n):                # returns A038572(n)     BL = len(bin(n))-2     return (n>>1) + ((n&1) << (BL-1)) def ROL(n):                # returns A006257(n) for n>0     BL = len(bin(n))-2     return (n*2) - (1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 18:12 EDT 2019. Contains 326295 sequences. (Running on oeis4.)