login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273021 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with 2*x*y + y*z - z*w - w*x a square, where w is a positive integer and x,y,z are nonnegative integers with x <= y. 16
1, 1, 2, 2, 2, 3, 2, 1, 2, 2, 1, 3, 3, 4, 2, 2, 3, 5, 2, 2, 4, 1, 1, 3, 3, 4, 7, 4, 4, 1, 1, 1, 4, 4, 2, 4, 4, 6, 5, 2, 5, 7, 3, 3, 3, 4, 1, 3, 5, 4, 5, 6, 2, 8, 1, 4, 4, 4, 3, 2, 5, 5, 4, 2, 5, 7, 2, 3, 4, 5, 1, 5, 4, 5, 6, 5, 3, 4, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 11, 31, 47, 55, 71, 105, 115, 119, 253, 383, 385, 4^k*m (k = 0,1,2,... and m = 2, 22, 23, 30, 330).
(ii) Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with (x+y)*(z+w) a square, where w is an integer and x,y,z are nonnegative integers with x <= y >= z >= |w|.
See arXiv:1604.06723 for more conjectural refinements of Lagrange's four-square theorem.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0 and 2*0*0 + 0*0 - 0*1 - 1*0 = 0^2.
a(2) = 1 since 2 = 0^2 + 1^2 + 0^2 + 1^2 with 0 < 1 and 2*0*1 + 1*0 - 0*1 - 1*0 = 0^2.
a(11) = 1 since 11 = 0^2 + 1^2 + 3^2 + 1^2 with 0 < 1 and 2*0*1 + 1*3 - 3*1 - 1*0 = 0^2.
a(22) = 1 since 22 = 0^2 + 3^2 + 2^2 + 3^2 with 0 < 3 and 2*0*3 + 3*2 - 2*3 - 3*0 = 0^2.
a(23) = 1 since 23 = 2^2 + 3^2 + 3^2 + 1^2 with 2 < 3 and 2*2*3 + 3*3 - 3*1 - 1*2 = 4^2.
a(30) = 1 since 30 = 1^2 + 3^2 + 2^2 + 4^2 with 1 < 3 and 2*1*3 + 3*2 - 2*4 - 4*1 = 0^2.
a(31) = 1 since 31 = 3^2 + 3^2 + 2^2 + 3^2 with 3 = 3 and
2*3*3 + 3*2 - 2*3 -3*3 = 3^2.
a(47) = 1 since 47 = 3^2 + 5^2 + 2^2 + 3^2 with 3 < 5 and 2*3*5 + 5*2 - 2*3 - 3*3 = 5^2.
a(55) = 1 since 55 = 1^2 + 7^2 + 2^2 + 1^2 with 1 < 7 and 2*1*7 + 7*2 - 2*1 - 1*1 = 5^2.
a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 < 5 and 2*1*5 + 5*3 - 3*6 - 6*1 = 1^2.
a(105) = 1 since 105 = 1^2 + 6^2 + 2^2 + 8^2 with 1 < 6 and 2*1*6 + 6*2 - 2*8 - 8*1 = 0^2.
a(115) = 1 since 115 = 1^2 + 8^2 + 7^2 + 1^2 with 1 < 8 and 2*1*8 + 8*7 - 7*1 - 1*1 = 8^2.
a(119) = 1 since 119 = 1^2 + 6^2 + 1^2 + 9^2 with 1 < 6 and 2*1*6 + 6*1 - 1*9 - 9*1 = 0^2.
a(253) = 1 since 253 = 2^2 + 8^2 + 11^2 + 8^2 with 2 < 8 and 2*2*8 + 8*11 - 11*8 - 8*2 = 4^2.
a(330) = 1 since 330 = 4^2 + 13^2 + 8^2 + 9^2 with 4 < 13 and 2*4*13 + 13*8 - 8*9 - 9*4 = 10^2.
a(383) = 1 since 383 = 9^2 + 14^2 + 5^2 + 9^2 with 9 < 14 and 2*9*14 + 14*5 - 5*9 - 9*9 = 14^2.
a(385) = 1 since 385 = 4^2 + 12^2 + 0^2 + 15^2 with 4 < 12 and 2*4*12 + 12*0 - 0*15 - 15*4 = 6^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[y*(2x+z)-Sqrt[n-x^2-y^2-z^2]*(x+z)], r=r+1], {x, 0, Sqrt[(n-1)/2]}, {y, x, Sqrt[n-1-x^2]}, {z, 0, Sqrt[n-1-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
CROSSREFS
Sequence in context: A116987 A219838 A159800 * A365722 A071137 A333253
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 13 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 09:26 EDT 2024. Contains 371967 sequences. (Running on oeis4.)