

A273017


Decimal expansion of the first moment of the reciprocal gamma distribution.


1



1, 9, 3, 4, 5, 6, 7, 0, 4, 2, 1, 4, 7, 8, 8, 4, 7, 2, 1, 1, 8, 3, 7, 1, 4, 7, 0, 4, 3, 6, 9, 1, 7, 8, 9, 2, 4, 3, 8, 2, 1, 7, 5, 5, 9, 2, 2, 6, 6, 5, 8, 8, 4, 8, 3, 8, 5, 5, 4, 4, 7, 5, 4, 2, 2, 5, 9, 5, 4, 4, 0, 8, 7, 4, 7, 1, 0, 1, 8, 2, 4, 7, 2, 2, 5, 4, 4, 5, 0, 0, 3, 8, 3, 4, 8, 2, 1, 0, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 FransénRobinson constant, p. 262.


LINKS

Table of n, a(n) for n=1..100.
Steven R. Finch Errata and Addenda to Mathematical Constants p. 35.
Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author]
Eric Weisstein's MathWorld FransénRobinson Constant
Wikipedia, Reciprocal gamma function


FORMULA

(1/I)*Integral_{x>=0} x/gamma(x) dx where I = Integral_{x>=0} 1/gamma(x) dx is the FransénRobinson constant.


EXAMPLE

1.93456704214788472118371470436917892438217559226658848385544754...


MATHEMATICA

digits = 100;
I0 = NIntegrate[1/Gamma[x], {x, 0, Infinity}, WorkingPrecision > digits + 5];
M1 = (1/I0) NIntegrate[x/Gamma[x], {x, 0, Infinity}, WorkingPrecision > digits + 5];
RealDigits[M1, 10, digits][[1]]


PROG

(PARI) default(realprecision, 120); intnum(x=0, [[1], 1], x/gamma(x))/intnum(x=0, [[1], 1], 1/gamma(x)) \\ Vaclav Kotesovec, May 14 2016


CROSSREFS

Cf. A058655.
Sequence in context: A011011 A236100 A070634 * A222233 A021111 A242302
Adjacent sequences: A273014 A273015 A273016 * A273018 A273019 A273020


KEYWORD

nonn,cons


AUTHOR

JeanFrançois Alcover, May 13 2016


STATUS

approved



