OFFSET
1,2
COMMENTS
Numbers that are not congruent to {1, 2, 3, 4, 5, 6, 8, 9, 10, 11} mod 12.
Bisection of A083032.
LINKS
David Lovler, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
G.f.: x^2*(7+5*x) / ((x-1)^2*(x+1)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = (12*n - 11 + (-1)^n)/2.
a(n)-a(-n) = A008594(n) for n>0.
Sum_{i=1..n} a(2*i) = A049453(n) for n>0.
Sum_{i=1..n} a(2*i-1) = A049598(n-1) for n>0.
E.g.f.: 5 + ((12*x - 11)*exp(x) + exp(-x))/2. - David Lovler, Sep 04 2022
Sum_{n>=2} (-1)^n/a(n) = log(2)/4 + log(3)/8 - ((sqrt(3)-1)*Pi + 2*(sqrt(3)+3)*log(sqrt(3)+2))/(24*(sqrt(3)+1)). - Amiram Eldar, Sep 17 2023
MATHEMATICA
Table[(12n - 11 + (-1)^n)/2, {n, 80}]
PROG
(Magma) [n : n in [0..400] | n mod 12 in [0, 7]];
(PARI) concat(0, Vec(x^2*(7+5*x)/((x-1)^2*(x+1)) + O(x^99))) \\ Altug Alkan, May 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 30 2016
STATUS
approved