This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272896 Difference between the number of odd and even digits in the decimal expansion of 2^n. 1
 1, -1, -1, -1, 0, 0, -2, -1, -1, 1, -2, -4, -2, 0, -1, -1, 1, 2, -4, -4, -1, 1, -1, -5, 2, 2, -4, 1, -3, 1, 0, -4, -2, 2, 3, 3, 1, 4, -2, 2, 5, 3, -1, -5, -2, -2, -2, 1, -1, 3, -4, 0, 2, 2, -1, -1, 5, 2, 2, -4, -3, 1, -5, -1, 0, 0, -6, 3, 5, 5, 2, -10, -8, 2, -3, 7, 9, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS All vanishing entries are a(A272898(k)) = 0, k >= 1. - Wolfdieter Lang, May 24 2016 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..10000 FORMULA a(n) = A055254(n) - A055253(n) = A196564(2^n) - A196563(2^n). - Indranil Ghosh, Mar 13 2017 EXAMPLE 2^10 = 1024, 2^11 = 2048, 2^12 = 4096, 2^13 = 8192. So a(10) = 1 - 3 = -2, a(11) = 0 - 4 = -4, a(12) = 1 - 3 = -2, a(13) = 2 - 2 = 0. MATHEMATICA Table[Count[#, _?OddQ] - Count[#, _?EvenQ] &@ IntegerDigits[2^n], {n, 0, 100}] (* Michael De Vlieger, May 09 2016 *) PROG (Ruby) def a(n)   str = (2 ** n).to_s   str.size - str.split('').map(&:to_i).select{|i| i % 2 == 0}.size * 2 end (0..n).each{|i| p a(i)} (PARI) a(n) = #select(x -> x%2, digits(2^n)) - #select(x -> !(x%2), digits(2^n)); for(n=0, 78, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 13 2017 (Python) def A272896(n): ....x=y=0 ....for i in str(2**n): ........if int(i)%2: x+=1 ........else: y+=1 ....return x - y # Indranil Ghosh, Mar 13 2017 CROSSREFS Cf. A000079, A055253, A055254, A196563, A196564, A272898. Sequence in context: A287216 A145515 A267383 * A188919 A026519 A025177 Adjacent sequences:  A272893 A272894 A272895 * A272897 A272898 A272899 KEYWORD sign,base AUTHOR Seiichi Manyama, May 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 13:29 EDT 2019. Contains 321330 sequences. (Running on oeis4.)