login
A272891
Number of partitions of Lucas(n).
1
2, 1, 3, 5, 15, 56, 385, 4565, 124754, 9289091, 2552338241, 3646072432125, 42748078035954696, 7274403582551733377346, 37285884524590579748861394570, 14531841772646818920248481411605550560, 1400135408797883233268006240578157606704308520406
OFFSET
0,1
LINKS
FORMULA
a(n) = A000041(A000032(n)).
EXAMPLE
a(4) = A000041(A000032(4)) = 15 because there are fifteen partitions of Lucas(4) = 7, namely: {7}, {6,1}, {5,2}, {5,1,1}, {4,3}, {4,2,1}, {4,1,1,1}, {3,3,1}, {3,2,2}, {3,2,1,1}, {3,1,1,1,1}, {2,2,2,1}, {2,2,1,1,1}, {2,1,1,1,1,1}, {1,1,1,1,1,1,1}.
MATHEMATICA
Table[PartitionsP[LucasL[n]], {n, 0, 18}]
PROG
(Magma) [NumberOfPartitions(Lucas(n)): n in [0..18]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, May 09 2016
EXTENSIONS
Edited by Bruno Berselli, May 09 2016
STATUS
approved