

A272873


Decimal expansion of the quadratic mean of 1 and Pi.


1



2, 3, 3, 1, 2, 6, 6, 2, 2, 2, 5, 8, 0, 4, 8, 4, 1, 1, 6, 2, 1, 5, 2, 5, 3, 0, 1, 9, 4, 2, 9, 6, 8, 5, 7, 5, 1, 7, 3, 9, 6, 3, 3, 7, 7, 6, 9, 5, 5, 6, 6, 4, 4, 5, 9, 3, 0, 6, 8, 4, 0, 8, 8, 7, 3, 1, 8, 2, 5, 4, 6, 3, 7, 6, 1, 6, 7, 2, 3, 5, 8, 2, 2, 0, 8, 9, 5, 9, 0, 6, 9, 1, 7, 5, 4, 7, 7, 2, 2, 3, 5, 3, 7, 5, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Quadratic mean (also known as the root mean square, rms) of two numbers x and y, is the Hoelder mean H(x,y,p) = ((x^2+y^2)/2)^(1/p) with p = 2.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..1000
Wikipedia, Generalized mean


FORMULA

Equals sqrt((1+Pi^2)/2).


EXAMPLE

2.3312662225804841162152530194296857517396337769556644593068408873...


PROG

(PARI) sqrt((1+Pi^2)/2)


CROSSREFS

Cf. A000796, A002388.
Other means of 1 and Pi: A002161 (geometric, p=0), A191502 (AGM), A197733 (harmonic, p=1), A269430 (arithmetic, p=1).
Sequence in context: A051911 A106595 A181608 * A109199 A279813 A256909
Adjacent sequences: A272870 A272871 A272872 * A272874 A272875 A272876


KEYWORD

nonn,cons


AUTHOR

Stanislav Sykora, May 15 2016


STATUS

approved



