login
A272778
Numbers n such that sigma(n) = concat(s,t) and n = s * t, where sigma(n) is the sum of the divisors of n.
2
48, 1040, 1196, 2720, 6080, 19080, 116644, 252800, 796172, 1014800, 2370352, 2796800, 2864000, 12200288, 13499120, 13716716, 15252992, 21938672, 33883520, 43218800, 62496048, 70240000, 98392832, 129704960, 199361792, 318836720, 548444160, 1218624080
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..46 (terms < 2.5*10^11)
EXAMPLE
sigma(48) = 124 = concat(12,4) and 12 * 4 = 48;
sigma(1196) = 2352 = concat(23,52) = and 23 * 52 = 1196.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, i, n;
for n from 1 to q do c:=sigma(n); for i from 1 to ilog10(c) do
a:=trunc(c/10^i); b:=c-a*10^i; if a*b=n then print(n); break;
fi; od; od; end: P(10^9);
MATHEMATICA
Select[Range[3*10^5], Function[n, Total@ Boole@ Function[k, n == First@ # Last@ # & /@ Map[FromDigits /@ TakeDrop[IntegerDigits@ k, #] &, Range[IntegerLength@ k - 1]]][DivisorSigma[1, n]] > 0]] (* Michael De Vlieger, May 07 2016, Version 10.2 *)
CROSSREFS
Sequence in context: A274806 A292045 A341306 * A160068 A229387 A010839
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, May 06 2016
EXTENSIONS
a(11)-a(28) from Giovanni Resta, May 06 2016
STATUS
approved