This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272709 Number of 2-colorings of [1..n] with no monochromatic Pythagorean triple. 1
 2, 4, 8, 16, 24, 48, 96, 192, 384, 576, 1152, 2304, 3456, 6912, 10368, 20736, 31104, 62208, 124416, 186624, 373248, 746496, 1492992, 2985984, 3234816, 4829184, 9658368, 19316736, 28975104, 43462656, 86925312, 173850624, 347701248, 519561216, 779341824, 1558683648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(7824) >= 8, but a(n) = 0 for n >= 7825. a(n) <= 2*a(n-1), with equality if n has no prime factor == 1 mod 4. LINKS Robert Israel, Table of n, a(n) for n = 1..56 M. J. H. Heule, O. Kullmann, and V. W. Marek, Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer, arXiv:1605.00723 [cs.DM]. EXAMPLE For n <= 4, a(n) = 2^n because all 2-colorings are admissible. For n = 5, there are 32 2-colorings of which 8 have 3,4,5 monochromatic, so a(5) = 32 - 8 = 24. MAPLE PPT:= proc(c) local m, n; option remember;   map(proc(p) local mm, nn; mm:= subs(p, m); nn:= subs(p, n);     if mm-nn>= 1 and nn >= 1 and igcd(mm, nn)=1 then       [mm^2-nn^2, 2*mm*nn, c]     else NULL     fi   end proc, {isolve(m^2+n^2=c)}) end proc: PT:= proc(c) local k;    `union`(seq(map(`*`, PPT(k), c/k), k = select(t -> t mod 4 = 1, numtheory:-divisors(c)))) end proc: extend:= proc(C, n, PTn) local b0, b1;    b0:= not ormap(t -> {t[1], t[2]} subset C, PTn);    b1:= not ormap(t -> {t[1], t[2]} intersect C = {}, PTn);    if b0 then       if b1 then C, C union {n}       else C union {n}       fi    elif b1 then C    else NULL    fi end proc: CC[3]:= {{}}: for n from 4 to 30 do   CC[n]:= map(extend, CC[n-1], n, PT(n)); od: 2, 4, seq(8*nops(CC[n]), n=3..30); CROSSREFS Sequence in context: A089827 A222089 A182763 * A119311 A305183 A112992 Adjacent sequences:  A272706 A272707 A272708 * A272710 A272711 A272712 KEYWORD nonn AUTHOR Robert Israel, May 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 09:06 EST 2019. Contains 330020 sequences. (Running on oeis4.)