OFFSET
1,2
COMMENTS
For n>=1, the largest prime factor of the n-th highly composite number.
LINKS
Joerg Arndt, Table of n, a(n) for n = 1..19999
EXAMPLE
The first highly composite numbers with their prime factorizations:
n: A002182(n) = [factorization]
1: 1 = []
2: 2 = [2]
3: 4 = [2^2]
4: 6 = [2 * 3]
5: 12 = [2^2 * 3]
6: 24 = [2^3 * 3]
7: 36 = [2^2 * 3^2]
8: 48 = [2^4 * 3]
9: 60 = [2^2 * 3 * 5]
10: 120 = [2^3 * 3 * 5]
11: 180 = [2^2 * 3^2 * 5]
12: 240 = [2^4 * 3 * 5]
13: 360 = [2^3 * 3^2 * 5]
14: 720 = [2^4 * 3^2 * 5]
15: 840 = [2^3 * 3 * 5 * 7]
16: 1260 = [2^2 * 3^2 * 5 * 7]
17: 1680 = [2^4 * 3 * 5 * 7]
18: 2520 = [2^3 * 3^2 * 5 * 7]
19: 5040 = [2^4 * 3^2 * 5 * 7]
20: 7560 = [2^3 * 3^3 * 5 * 7]
21: 10080 = [2^5 * 3^2 * 5 * 7]
22: 15120 = [2^4 * 3^3 * 5 * 7]
23: 20160 = [2^6 * 3^2 * 5 * 7]
24: 25200 = [2^4 * 3^2 * 5^2 * 7]
25: 27720 = [2^3 * 3^2 * 5 * 7 * 11]
26: 45360 = [2^4 * 3^4 * 5 * 7]
27: 50400 = [2^5 * 3^2 * 5^2 * 7]
28: 55440 = [2^4 * 3^2 * 5 * 7 * 11]
29: 83160 = [2^3 * 3^3 * 5 * 7 * 11]
30: 110880 = [2^5 * 3^2 * 5 * 7 * 11]
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Nov 01 2016
STATUS
approved