login
A272599
Numbers n such that the multiplicative group modulo n is the direct product of 9 cyclic groups.
9
38798760, 46966920, 52492440, 59219160, 63303240, 66186120, 68643960, 70750680, 75555480, 77597520, 80120040, 81124680, 83723640, 84444360, 85645560, 86551080, 87807720, 92520120, 93573480, 93933840, 95975880, 98138040, 102222120, 102287640, 104772360, 104984880, 107267160, 107987880, 108228120, 109341960, 110427240
OFFSET
1,1
COMMENTS
Numbers n such that A046072(n) = 9.
MATHEMATICA
A046072[n_] := Which[n == 1 || n == 2, 1,
OddQ[n], PrimeNu[n],
EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
Divisible[n, 4] && ! Divisible[n, 8], PrimeNu[n],
Divisible[n, 8], PrimeNu[n] + 1];
Select[Range[840, 840*140000, 840], A046072[#] == 9&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
PROG
(PARI) for(n=1, 10^9, my(t=#(znstar(n)[2])); if(t==9, print1(n, ", ")));
CROSSREFS
Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8).
Sequence in context: A376794 A342350 A015365 * A105004 A216006 A330363
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 05 2016
STATUS
approved