login
A272596
Numbers n such that the multiplicative group modulo n is the direct product of 6 cyclic groups.
9
9240, 10920, 14280, 15960, 17160, 18480, 19320, 21840, 22440, 24024, 24360, 25080, 26040, 26520, 27720, 28560, 29640, 30360, 31080, 31416, 31920, 32760, 34320, 34440, 35112, 35880, 36120, 36960, 37128, 38280, 38640, 38760, 39480, 40040, 40920, 41496, 42504, 42840, 43680, 44520, 44880, 45240, 46200
OFFSET
1,1
COMMENTS
Numbers n such that A046072(n) = 6.
MATHEMATICA
A046072[n_] := Which[n == 1 || n == 2, 1,
OddQ[n], PrimeNu[n],
EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n],
Divisible[n, 8], PrimeNu[n] + 1];
Select[Range[5*10^4], A046072[#] == 6&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
PROG
(PARI) for(n=1, 10^5, my(t=#(znstar(n)[2])); if(t==6, print1(n, ", ")));
CROSSREFS
Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272597 (k=7), A272598 (k=8), A272599 (k=9).
Sequence in context: A223303 A031594 A262508 * A189984 A092005 A236512
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 05 2016
STATUS
approved