

A272575


Perfect powers that are the sum of two Fibonacci numbers.


1




OFFSET

1,2


COMMENTS

Intersection of A001597 and A084176.
Listed terms are 1, 2^2, 2^3, 3^2, 2^4, 6^2, 12^2, 10^3, 40^2, 3864^2.
First five terms are also members of A000961.
Conjecture: there are no more terms in this sequence. Any remaining terms must have over 10000 digits.  Charles R Greathouse IV, May 04 2016


LINKS

Table of n, a(n) for n=1..10.


EXAMPLE

8 is a term because 2^3 = 3 + 5.


MATHEMATICA

Select[Range[10^4], Function[k, Or[k == 1, GCD @@ Map[Last, FactorInteger@ k] > 1] && Total@ Map[Times @@ Boole@ Map[MemberQ[s, #] &, #] &, Transpose@ {#, k  #} &@ Range[0, Floor[k/2]]] > 0]] (* Michael De Vlieger, May 03 2016 *)


PROG

(PARI) list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([1])); if(fibonacci(t)>lim, t); for(i=3, upper, t=fibonacci(i); for(j=2, i1, tt=t+fibonacci(j); if(tt>lim, break); if(ispower(tt), listput(v, tt)))); Set(v) \\ Charles R Greathouse IV, May 03 2016


CROSSREFS

Cf. A000045, A001597, A084176, A111378.
Sequence in context: A285438 A089042 A227243 * A020145 A202271 A162898
Adjacent sequences: A272572 A272573 A272574 * A272576 A272577 A272578


KEYWORD

nonn


AUTHOR

Altug Alkan, May 03 2016


STATUS

approved



