login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272575 Perfect powers that are the sum of two Fibonacci numbers. 1
1, 4, 8, 9, 16, 36, 144, 1000, 1600, 14930496 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Intersection of A001597 and A084176.

Listed terms are 1, 2^2, 2^3, 3^2, 2^4, 6^2, 12^2, 10^3, 40^2, 3864^2.

First five terms are also members of A000961.

Conjecture: there are no more terms in this sequence. Any remaining terms must have over 10000 digits. - Charles R Greathouse IV, May 04 2016

LINKS

Table of n, a(n) for n=1..10.

EXAMPLE

8 is a term because 2^3 = 3 + 5.

MATHEMATICA

Select[Range[10^4], Function[k, Or[k == 1, GCD @@ Map[Last, FactorInteger@ k] > 1] && Total@ Map[Times @@ Boole@ Map[MemberQ[s, #] &, #] &, Transpose@ {#, k - #} &@ Range[0, Floor[k/2]]] > 0]] (* Michael De Vlieger, May 03 2016 *)

PROG

(PARI) list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([1])); if(fibonacci(t)>lim, t--); for(i=3, upper, t=fibonacci(i); for(j=2, i-1, tt=t+fibonacci(j); if(tt>lim, break); if(ispower(tt), listput(v, tt)))); Set(v) \\ Charles R Greathouse IV, May 03 2016

CROSSREFS

Cf. A000045, A001597, A084176, A111378.

Sequence in context: A285438 A089042 A227243 * A020145 A202271 A162898

Adjacent sequences:  A272572 A272573 A272574 * A272576 A272577 A272578

KEYWORD

nonn

AUTHOR

Altug Alkan, May 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 14:53 EST 2020. Contains 331049 sequences. (Running on oeis4.)