login
A272550
Lexicographically earliest increasing sequence of primes such that odd-indexed terms have final digit 1 and even-indexed terms have final digit 9.
1
11, 19, 31, 59, 61, 79, 101, 109, 131, 139, 151, 179, 181, 199, 211, 229, 241, 269, 271, 349, 401, 409, 421, 439, 461, 479, 491, 499, 521, 569, 571, 599, 601, 619, 631, 659, 661, 709, 751, 769, 811, 829, 881, 919, 941, 1009, 1021, 1039, 1051, 1069, 1091, 1109
OFFSET
1,1
COMMENTS
a(n) + a(n+1) = 0 (mod 10) for all n >= 1.
LINKS
MAPLE
a:= proc(n) option remember; local p, d;
if n=1 then p:= 11
else p:= a(n-1); d:= `if`(n::odd, 1, 9);
while irem(p, 10)<>d do p:=nextprime(p) od
fi; p
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 11 2016
MATHEMATICA
a[1] = 11; a[n_] := a[n] = Block[{d, q = a[n-1]}, d=10-Mod[q, 10]; While[ Mod[q = NextPrime@ q, 10] != d]; q]; Array[a, 30] (* Giovanni Resta, May 11 2016 *)
CROSSREFS
Sequence in context: A155555 A357426 A152091 * A122869 A106535 A178150
KEYWORD
nonn,easy,base
AUTHOR
Giovanni Teofilatto, May 11 2016
STATUS
approved