Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #23 Jul 26 2023 08:09:54
%S 1,22,343,4664,58985,713306,8367627,96021948,1083676269,12071330590,
%T 133058984911,1454046639232,15775034293553,170096021947874,
%U 1824417009602195,19478737997256516,207133058984910837,2194787379972565158,23182441700960219479,244170096021947873800
%N Convolution of nonzero repunits (A002275) with themselves.
%C Partial sums of A014925.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (22,-141,220,-100)
%F O.g.f.: 1/((1 - 10*x)^2*(1 - x)^2).
%F E.g.f.: (29 + 9*x + 700*exp(9*x) + 9000*x*exp(9*x))*exp(x)/729.
%F a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4).
%F a(n) = (9*n(10^(n+2) + 1) + 7*10^(n+2) + 29)/729.
%F A010879(a(n)) = A010879(n+1).
%t LinearRecurrence[{22, -141, 220, -100}, {1, 22, 343, 4664}, 20]
%t Table[(9 n (10^(n + 2) + 1) + 7 10^(n + 2) + 29)/729, {n, 0, 19}]
%o (PARI) A272525(n)=(9*n+7)*(10^(n+2)+1)\729+1 \\ _M. F. Hasler_, Nov 02 2016
%Y Cf. A002275, A010879, A014925, A083449.
%K base,nonn,easy
%O 0,2
%A _Ilya Gutkovskiy_, May 02 2016