The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272442 Numbers n such that the average of the positive divisors of n^2 is a square. 0
 1, 313, 4077, 42217, 75848, 1276101, 2468936, 8105257, 13213921, 23740424, 76136648, 172118709, 249948601, 296474857, 309232296, 772776968, 1236329761, 1254551521, 2288805793, 2372141576, 2410951561, 2536945441, 3202075016, 10065852072 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The values of n are 1, 313, 3^3*151, 7*37*163, 2^3*19*499, 3^3*151*313, 2^3*19*37*439, 37*439*499, ... Corresponding n^2 values are 1, 97969, 16621929, 1782275089, ... The next two primes in the sequence (after 313 and 2288805793) are 86136917171761 and 23666840016182721134955337. - Giovanni Resta, Apr 26 2017 LINKS EXAMPLE 313 is a term because the divisors of 313^2 are 1, 313 and 313^2. Average of 1, 313 and 313^2 is 32761 that is 181^2. MATHEMATICA Select[Range[10^5], IntegerQ@ Sqrt@ Mean@ Divisors[#^2] &] (* Michael De Vlieger, Apr 29 2016 *) PROG (PARI) lista(nn) = for(n=1, nn, if(sigma(n^2) % numdiv(n^2) == 0 && issquare(sigma(n^2)/numdiv(n^2)), print1(n, ", "))); (PARI) is(n)=my(f=factor(n), s, d); f[, 2]*=2; s=sigma(f); d=numdiv(f); s%d==0 && issquare(s/d) \\ Charles R Greathouse IV, Apr 29 2016 CROSSREFS Cf. A000290, A003601, A144695. Sequence in context: A108845 A348170 A340464 * A200912 A123059 A210071 Adjacent sequences:  A272439 A272440 A272441 * A272443 A272444 A272445 KEYWORD nonn AUTHOR Altug Alkan, Apr 29 2016 EXTENSIONS a(10)-a(16) from Charles R Greathouse IV, Apr 29 2016 a(17)-a(24) from Giovanni Resta, Apr 26 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 07:51 EDT 2022. Contains 356030 sequences. (Running on oeis4.)