%I #10 Feb 16 2025 08:33:34
%S 251831,194713,144889,101963,65539,35221,10613,8681,23057,32911,38639,
%T 40637,39301,35027,28211,19249,8537,3529,16553,30139,43891,57413,
%U 70309,82183,92639,101281,107713,111539,112363,109789,103421,92863,77719,57593,32089,811
%N Primes of the form abs(-66n^3 + 3845n^2 - 60897n + 251831) in order of increasing nonnegative n.
%H Robert Price, <a href="/A272438/b272438.txt">Table of n, a(n) for n = 1..3012</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a>
%e 65539 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
%t n = Range[0, 100]; Select[-66n^3 + 3845n^2 - 60897n + 251831, PrimeQ[#] &]
%Y Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.
%Y Cf. A271980, A272030, A272074, A272075, A272159, A271143, A272284, A272302, A272437.
%K nonn,changed
%O 1,1
%A _Robert Price_, Apr 29 2016