login
A272387
Smallest primes of 6 X 6 magic squares formed from consecutive primes.
5
7, 41, 47, 59, 67, 137, 149, 151, 173, 181, 191, 199, 229, 241, 257, 277, 283, 313, 409, 421, 499, 503, 509, 631, 701, 709, 829, 887, 907, 971, 977, 983, 1013, 1019, 1033, 1049, 1051, 1061, 1201, 1223, 1229, 1321, 1439, 1451, 1459, 1489, 1493, 1523, 1531, 1549
OFFSET
1,1
PROG
(PARI) A272387(n)=MagicPrimes(A177434(n), 6)[1] \\ See A073519 for MagicPrimes(). - M. F. Hasler, Oct 28 2018
(PARI) is_candidate(p, N=6)={denominator(p=A177434(, p, N))==1 && !bittest(p-N, 0)} \\ This necessary condition is also sufficient for all primes up to and beyond the limit of the terms displayed in DATA. - M. F. Hasler, Oct 30 2018
CROSSREFS
Cf. A256891 (analog for 3 X 3), A260673 (4 X 4), A272386 (5 X 5).
Cf. A177434 (magic sums, 6 X 6 consecutive primes).
Sequence in context: A080666 A224718 A374234 * A338771 A161505 A105902
KEYWORD
nonn
AUTHOR
STATUS
approved