login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272383 Numbers n such that Bernoulli number B_{n} has denominator 3318. 1
78, 1014, 2418, 3354, 7566, 8502, 10842, 11622, 12246, 12714, 13026, 15054, 15366, 15522, 16458, 17394, 23946, 26286, 27222, 27534, 29562, 29874, 30342, 31434, 31902, 33774, 34242, 35646, 36114, 40794, 42198, 43602, 44538, 47814, 48126, 48282, 49218, 50154, 52494, 55302, 57174, 57642, 59046, 59982 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

3318 = 2 * 3 * 7 * 79.

All terms are multiples of a(1) = 78.

For these numbers numerator(B_{n}) mod denominator(B_{n}) = 37.

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000

EXAMPLE

Bernoulli B_{78} is 414846365575400828295179035549542073492199375372400483487/3318, hence 78 is in the sequence.

MAPLE

with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do

if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 3318);

MATHEMATICA

Select[78 Range@ 800, Denominator@ BernoulliB@ # == 3318 &] (* Michael De Vlieger, Apr 28 2016 *)

PROG

(PARI) lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 3318, print1(n, ", "))); \\ Altug Alkan, Apr 28 2016

(Python)

from sympy import divisors, isprime

A272383_list = []

for i in range(78, 10**6, 78):

    for d in divisors(i):

        if d not in (1, 2, 6, 78) and isprime(d+1):

            break

    else:

        A272383_list.append(i) # Chai Wah Wu, May 02 2016

CROSSREFS

Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186.

Sequence in context: A147619 A119093 A128951 * A027786 A175383 A190396

Adjacent sequences:  A272380 A272381 A272382 * A272384 A272385 A272386

KEYWORD

nonn,easy

AUTHOR

Paolo P. Lava, Apr 28 2016

EXTENSIONS

a(9)-a(22) from Altug Alkan, Apr 28 2016

More terms from Michael De Vlieger, Apr 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)