The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272201 Bisection of primes congruent to 1 modulo 3 (A002476), depending on the corresponding A001479 entry being congruent to 1 modulo 3 or not. Here the second case. 4
 7, 31, 37, 67, 73, 79, 139, 151, 199, 211, 223, 229, 271, 307, 313, 337, 367, 397, 421, 439, 457, 541, 547, 571, 577, 613, 643, 709, 739, 751, 823, 829, 853, 877, 907, 919, 997 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The other primes congruent to 1 modulo 3 are given in A272200, where also more details are given. Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1 (see also A001479). The present sequence gives these primes corresponding to A(m+1) not congruent 1 modulo 3. The ones corresponding to A(m+1) == 1 (mod 3) (the complement) are given in A272200. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA This sequence collects the 1 (mod 3) primes p(m) =  A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) not == 1 (mod 3), for m >= 1. A(m) = A001479(m+1). MAPLE filter:= proc(n) local S, x, y;     if not isprime(n) then return false fi;     S:= remove(hastype, [isolve(x^2+3*y^2=n)], negative);     subs(S, x) mod 3 <> 1 end proc: select(filter, [seq(i, i=7..1000, 6)]); # Robert Israel, Apr 29 2019 MATHEMATICA filterQ[n_] := Module[{S, x, y}, If[!PrimeQ[n], Return[False]]; S = Solve[x > 0 && y > 0 && x^2 + 3 y^2 == n, Integers]; Mod[x /. S[], 3] != 1]; Select[Range[7, 1000, 6], filterQ] (* Jean-François Alcover, Apr 21 2020, after Robert Israel *) CROSSREFS Cf. A000727, A001479, A002476, A001480, A272198, A272200 (complement relative to A002476). Sequence in context: A040064 A241101 A238664 * A325423 A309381 A276741 Adjacent sequences:  A272198 A272199 A272200 * A272202 A272203 A272204 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Apr 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 12:15 EDT 2021. Contains 343204 sequences. (Running on oeis4.)