

A272201


Bisection of primes congruent to 1 modulo 3 (A002476), depending on the corresponding A001479 entry being congruent to 1 modulo 3 or not. Here the second case.


3



7, 31, 37, 67, 73, 79, 139, 151, 199, 211, 223, 229, 271, 307, 313, 337, 367, 397, 421, 439, 457, 541, 547, 571, 577, 613, 643, 709, 739, 751, 823, 829, 853, 877, 907, 919, 997
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The other primes congruent to 1 modulo 3 are given in A272200, where also more details are given.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1 (see also A001479). The present sequence gives these primes corresponding to A(m+1) not congruent 1 modulo 3. The ones corresponding to A(m+1) == 1 (mod 3) (the complement) are given in A272200.


LINKS

Table of n, a(n) for n=1..37.


FORMULA

This sequence collects the 1 (mod 3) primes p(m) = A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) not == 1 (mod 3), for m >= 1. A(m) = A001479(m+1).


CROSSREFS

Cf. A000727, A001479, A002476, A001480, A272198, A272200 (complement relative to A002476).
Sequence in context: A040064 A241101 A238664 * A276741 A000696 A171733
Adjacent sequences: A272198 A272199 A272200 * A272202 A272203 A272204


KEYWORD

nonn,easy


AUTHOR

Wolfdieter Lang, Apr 28 2016


STATUS

approved



