login
A272201
Bisection of primes congruent to 1 modulo 3 (A002476), depending on the corresponding A001479 entry being congruent to 1 modulo 3 or not. Here the second case.
4
7, 31, 37, 67, 73, 79, 139, 151, 199, 211, 223, 229, 271, 307, 313, 337, 367, 397, 421, 439, 457, 541, 547, 571, 577, 613, 643, 709, 739, 751, 823, 829, 853, 877, 907, 919, 997
OFFSET
1,1
COMMENTS
The other primes congruent to 1 modulo 3 are given in A272200, where also more details are given.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1 (see also A001479). The present sequence gives these primes corresponding to A(m+1) not congruent 1 modulo 3. The ones corresponding to A(m+1) == 1 (mod 3) (the complement) are given in A272200.
LINKS
FORMULA
This sequence collects the 1 (mod 3) primes p(m) = A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) not == 1 (mod 3), for m >= 1. A(m) = A001479(m+1).
MAPLE
filter:= proc(n) local S, x, y;
if not isprime(n) then return false fi;
S:= remove(hastype, [isolve(x^2+3*y^2=n)], negative);
subs(S[1], x) mod 3 <> 1
end proc:
select(filter, [seq(i, i=7..1000, 6)]); # Robert Israel, Apr 29 2019
MATHEMATICA
filterQ[n_] := Module[{S, x, y}, If[!PrimeQ[n], Return[False]]; S = Solve[x > 0 && y > 0 && x^2 + 3 y^2 == n, Integers]; Mod[x /. S[[1]], 3] != 1];
Select[Range[7, 1000, 6], filterQ] (* Jean-François Alcover, Apr 21 2020, after Robert Israel *)
CROSSREFS
Cf. A000727, A001479, A002476, A001480, A272198, A272200 (complement relative to A002476).
Sequence in context: A040064 A241101 A238664 * A325423 A309381 A276741
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 28 2016
STATUS
approved