OFFSET
1,1
COMMENTS
The other primes congruent to 1 modulo 3 are given in A272200, where also more details are given.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1 (see also A001479). The present sequence gives these primes corresponding to A(m+1) not congruent 1 modulo 3. The ones corresponding to A(m+1) == 1 (mod 3) (the complement) are given in A272200.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
MAPLE
filter:= proc(n) local S, x, y;
if not isprime(n) then return false fi;
S:= remove(hastype, [isolve(x^2+3*y^2=n)], negative);
subs(S[1], x) mod 3 <> 1
end proc:
select(filter, [seq(i, i=7..1000, 6)]); # Robert Israel, Apr 29 2019
MATHEMATICA
filterQ[n_] := Module[{S, x, y}, If[!PrimeQ[n], Return[False]]; S = Solve[x > 0 && y > 0 && x^2 + 3 y^2 == n, Integers]; Mod[x /. S[[1]], 3] != 1];
Select[Range[7, 1000, 6], filterQ] (* Jean-François Alcover, Apr 21 2020, after Robert Israel *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 28 2016
STATUS
approved