login
A272186
Numbers n such that Bernoulli number B_{n} has denominator 690.
27
44, 484, 748, 2596, 2684, 3124, 4444, 4708, 6556, 6908, 7964, 8228, 9812, 9988, 11308, 11572, 11836, 11924, 12452, 13684, 13772, 13948, 14828, 15356, 15532, 16148, 16676, 16852, 17468, 17644, 18524, 19316, 19756, 20108, 20284, 20372, 21076, 22924, 23012, 24068, 24772, 25124, 25828, 26444
OFFSET
1,1
COMMENTS
690 = 2 * 3 * 5 * 23.
All terms are multiple of a(1) = 44.
For these numbers Numerator(B_{n}) mod Denominator(B_{n}) = 637.
LINKS
EXAMPLE
Bernoulli B_{44} is -27833269579301024235023/690, hence 44 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 690);
PROG
(PARI) isok(n) = denominator(bernfrac(n)) == 690; \\ Michel Marcus, Apr 22 2016
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 22 2016
EXTENSIONS
a(9)-a(14) from Michel Marcus, Apr 22 2016
More terms from Altug Alkan, Apr 22 2016
STATUS
approved