login
A272185
Numbers n such that Bernoulli number B_{n} has denominator 870.
27
28, 56, 532, 868, 1064, 1736, 1988, 2828, 2884, 3052, 3836, 5068, 5516, 5768, 5908, 6104, 6244, 6356, 6412, 6748, 7196, 7364, 7924, 8708, 8764, 8876, 9268, 9716, 9772, 10108, 10136, 10276, 10724, 10892, 11032, 11228, 11816, 12292, 12488, 12796, 12824, 12908, 12964, 13076, 13412, 13496, 14392
OFFSET
1,1
COMMENTS
870 = 2 * 3 * 5 * 29.
All terms are multiple of a(1) = 28.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 811.
LINKS
EXAMPLE
Bernoulli B_{28} is -23749461029/870, hence 28 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 870);
MATHEMATICA
Select[28 Range@ 520, Denominator@ BernoulliB@ # == 870 &] (* Michael De Vlieger, Apr 29 2016 *)
PROG
(PARI) isok(n) = denominator(bernfrac(n)) == 870; \\ Michel Marcus, Apr 22 2016
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 22 2016
EXTENSIONS
a(13)-a(29) from Michel Marcus, Apr 22 2016
More terms from Altug Alkan, Apr 22 2016
STATUS
approved