%I #9 Apr 23 2016 07:36:10
%S 1,1,288,53094139822080000,
%T 7114507432973653690572666462301501337370624000000000000
%N a(n) = Product_{k=0..n} (n^2-k)!.
%C The next term has 392 digits.
%F a(n) = A272163(n) * ((n^2)!)^(n+1) / A272179(n)^n.
%F a(n) ~ exp(1/24 + n/6 - n^2 - n^3) * n^(1 + n^2 + 2*n^3) * (2*Pi)^((n+1)/2).
%t Table[Product[(n^2-k)!, {k, 0, n}], {n, 0, 6}]
%t Table[BarnesG[n^2 + 2]/BarnesG[n^2 - n + 1], {n, 0, 6}]
%Y Cf. A272095, A272163, A272238, A272241.
%K nonn,easy
%O 0,3
%A _Vaclav Kotesovec_, Apr 21 2016