login
Numbers n such that Bernoulli number B_{n} has denominator 1590.
27

%I #25 Apr 29 2016 09:28:03

%S 52,104,988,1976,3068,3172,5252,5356,5564,6136,6344,7124,7748,8164,

%T 8684,10244,10712,12532,13364,13676,13988,14092,16276,16328,17212,

%U 17368,17524,18044,18356,19084,19916,20228,20488,20644,22828,23348,23764

%N Numbers n such that Bernoulli number B_{n} has denominator 1590.

%C 1590 = 2 * 3 * 5 * 53.

%C All terms are multiple of a(1) = 52.

%C For these numbers numerator(B_{n}) mod denominator(B_{n}) = 1507.

%H Seiichi Manyama, <a href="/A272140/b272140.txt">Table of n, a(n) for n = 1..1000</a>

%e Bernoulli B_{52} is -801165718135489957347924991853/1590, hence 52 is in the sequence.

%p with(numtheory): P:=proc(q,h) local n; for n from 2 by 2 to q do

%p if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,1590);

%t Select[Range[0, 1000], Denominator[BernoulliB[#]] == 1590 &] (* _Robert Price_, Apr 21 2016 *)

%o (PARI) isok(n) = denominator(bernfrac(n)) == 1590; \\ _Michel Marcus_, Apr 22 2016

%Y Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272183, A272184, A272185, A272186.

%K nonn

%O 1,1

%A _Paolo P. Lava_, Apr 21 2016

%E a(12)-a(15) from _Michel Marcus_, Apr 22 2016

%E More terms from _Altug Alkan_, Apr 22 2016