OFFSET
1,1
COMMENTS
1590 = 2 * 3 * 5 * 53.
All terms are multiple of a(1) = 52.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 1507.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..1000
EXAMPLE
Bernoulli B_{52} is -801165718135489957347924991853/1590, hence 52 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 1590);
MATHEMATICA
Select[Range[0, 1000], Denominator[BernoulliB[#]] == 1590 &] (* Robert Price, Apr 21 2016 *)
PROG
(PARI) isok(n) = denominator(bernfrac(n)) == 1590; \\ Michel Marcus, Apr 22 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 21 2016
EXTENSIONS
a(12)-a(15) from Michel Marcus, Apr 22 2016
More terms from Altug Alkan, Apr 22 2016
STATUS
approved