login
A272138
Numbers n such that Bernoulli number B_{n} has denominator 798.
27
18, 54, 342, 558, 774, 1026, 1206, 1674, 1962, 2322, 2826, 2934, 3006, 3474, 3618, 3798, 4014, 4086, 4122, 4842, 5706, 5886, 6282, 6354, 6498, 6894, 7002, 7362, 7578, 7794, 7902, 8082, 8226, 8334, 8478, 8766, 8982, 9018, 9378, 9414, 9846, 10134, 10278, 10422, 10602, 10782
OFFSET
1,1
COMMENTS
798 = 2 * 3 * 7 * 19.
All terms are multiple of a(1) = 18.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 775.
LINKS
EXAMPLE
Bernoulli B_{18} is 43867/798, hence 18 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 798);
MATHEMATICA
Select[Range[0, 1000], Denominator[BernoulliB[#]] == 798 &] (* Robert Price, Apr 21 2016 *)
PROG
(PARI) lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 798, print1(n, ", "))); \\ Altug Alkan, Apr 22 2016
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Apr 21 2016
EXTENSIONS
More terms from Altug Alkan, Apr 22 2016
STATUS
approved