The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272134 a(n) = n*(15*n^2 - 15*n + 4). 2
 0, 4, 68, 282, 736, 1520, 2724, 4438, 6752, 9756, 13540, 18194, 23808, 30472, 38276, 47310, 57664, 69428, 82692, 97546, 114080, 132384, 152548, 174662, 198816, 225100, 253604, 284418, 317632, 353336, 391620, 432574, 476288, 522852, 572356, 624890, 680544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16) Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA O.g.f.: 2*x*(2 + 26*x + 17*x^2)/(1-x)^4. E.g.f.: x*(4 + 30*x + 15*x^2)*exp(x). a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3. See page 7 in Brent's paper: a(n) = 2*n^2*A049450(n) - n*(2*n-1)*A049450(n-1). A272357(n) = 2*n^2*a(n) - n*(2*n-1)*a(n-1). MATHEMATICA Table[n (15 n^2 - 15 n + 4), {n, 0, 40}] PROG (MAGMA) [n*(15*n^2-15*n+4): n in [0..40]]; (PARI) vector(100, n, n--; n*(15*n^2 - 15*n + 4)) \\ Altug Alkan, Apr 28 2016 (Python) for n in range(0, 10**3):print(n*(15*n**2-15*n+4), end=", ") # Soumil Mandal, Apr 30 2016 CROSSREFS Cf. A049450, A272357. Sequence in context: A308382 A083931 A133881 * A073774 A247735 A221336 Adjacent sequences:  A272131 A272132 A272133 * A272135 A272136 A272137 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Apr 27 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 07:30 EDT 2020. Contains 333344 sequences. (Running on oeis4.)