This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272126 a(n) = 120*n^3 + 60*n^2 + 2*n + 1. 4
 1, 183, 1205, 3787, 8649, 16511, 28093, 44115, 65297, 92359, 126021, 167003, 216025, 273807, 341069, 418531, 506913, 606935, 719317, 844779, 984041, 1137823, 1306845, 1491827, 1693489, 1912551, 2149733, 2405755, 2681337, 2977199, 3294061, 3632643, 3993665 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is the polynomial Qbar(3,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials. - Peter Bala, Jan 22 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16). Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA O.g.f.: (1 + 179*x + 479*x^2 + 61*x^3)/(1-x)^4. E.g.f.: (1 + 182*x + 420*x^2 + 120*x^3)*exp(x). a(n) = (2*n+1)*(60*n^2+1). a(n) = (2*n+1) * A158673(n). a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. See page 7 in Brent's paper: a(n) = (2*n+1)^2*A014641(n) - 2*n*(2*n+1)*A014641(n-1). A272127(n) = (2*n+1)^2*a(n) - 2*n*(2*n+1)*a(n-1). From Peter Bala, Jan 22 2019: (Start) a(n) = 1/4^n * Sum_{k = 0..n} (2*k + 1)^6 * binomial(2*n + 1, n - k). a(n-1) = 2/4^n * binomial(2*n,n) * ( 1 + 3^6*(n - 1)/(n + 1) + 5^6*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^6*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End) MATHEMATICA Table[120 n^3 + 60 n^2 + 2 n + 1, {n, 0, 40}] PROG (MAGMA) [120*n^3 + 60*n^2 + 2*n + 1: n in [0..50]]; (PARI) a(n) = 120*n^3 + 60*n^2 + 2*n + 1; \\ Altug Alkan, Apr 30 2016 CROSSREFS Cf. A014641, A158673, A160485, A245244, A272127, A272129. Sequence in context: A260172 A252070 A193253 * A171563 A061657 A217301 Adjacent sequences:  A272123 A272124 A272125 * A272127 A272128 A272129 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Apr 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 16 23:49 EDT 2019. Contains 325092 sequences. (Running on oeis4.)