login
A272103
Convolution of nonzero heptagonal numbers (A000566) with themselves.
0
1, 14, 85, 320, 910, 2156, 4494, 8520, 15015, 24970, 39611, 60424, 89180, 127960, 179180, 245616, 330429, 437190, 569905, 733040, 931546, 1170884, 1457050, 1796600, 2196675, 2665026, 3210039, 3840760, 4566920, 5398960, 6348056, 7426144, 8645945, 10020990, 11565645, 13295136
OFFSET
0,2
LINKS
OEIS Wiki, Figurate numbers
Eric Weisstein's World of Mathematics, Heptagonal Number
FORMULA
O.g.f.: (1 + 4*x)^2/(1 - x)^6.
E.g.f.: (24 + 312*x + 696*x^2 + 424*x^3 + 85*x^4 + 5*x^5)*exp(x)/24.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(5*n^2 + 5*n + 4)/24.
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 14, 85, 320, 910, 2156}, 36]
Table[(n + 1) (n + 2) (n + 3) ((5 n^2 + 5 n + 4)/24), {n, 0, 35}]
CROSSREFS
Cf. A000566.
Cf. similar sequences of the convolution of k-gonal numbers with themselves listed in A271662.
Sequence in context: A273182 A341854 A025607 * A244865 A059600 A206621
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 20 2016
STATUS
approved