login
A272078
Numbers k such that k^2 + 1 is product of 3 distinct primes.
2
13, 17, 21, 23, 27, 31, 33, 37, 53, 55, 63, 67, 72, 75, 77, 81, 87, 89, 91, 97, 98, 103, 105, 109, 111, 112, 113, 115, 119, 122, 125, 127, 128, 129, 135, 137, 138, 142, 147, 148, 149, 151, 153, 155, 161, 162, 163, 167, 172, 174, 179, 185, 189, 192, 197, 200, 208
OFFSET
1,1
LINKS
EXAMPLE
13 appears in the list because 13^2 + 1 = 170 = 2 * 5 * 17.
21 appears in the list because 21^2 + 1 = 442 = 2 * 13 * 17.
MATHEMATICA
A272078 = {}; Do[ k = Last /@ FactorInteger[n^2 + 1]; If[k == {1, 1, 1}, AppendTo[A272078, n]], {n, 1000}]; A272078
Select[Range[1000], Last /@ FactorInteger[#^2 + 1] == {1, 1, 1} &]
PROG
(PARI) isok(k) = my(x=k^2+1); (omega(x)==3) && (bigomega(x)==3); \\ Michel Marcus, Mar 11 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 19 2016
STATUS
approved