login
A272067
a(n) = (10^n-1)^4.
5
0, 6561, 96059601, 996005996001, 9996000599960001, 99996000059999600001, 999996000005999996000001, 9999996000000599999960000001, 99999996000000059999999600000001, 999999996000000005999999996000000001, 9999999996000000000599999999960000000001, 99999999996000000000059999999999600000000001
OFFSET
0,2
COMMENTS
The sum of the digits of a(n) is divisible by 18. For example, 9^4 = 6561 and 6 + 5 + 6 + 1 = 18 * 1.
Number of 9 in a(n) is 2*n-2 for n > 0. - Seiichi Manyama, Sep 18 2018
FORMULA
a(n) = A059988(n)^2 = A002283(n)^4.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 6561*x*(1 + 100*x)*(1 + 3430*x + 10000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)).
E.g.f.: (1 - 4*exp(9*x) + 6*exp(99*x) - 4*exp(999*x) + exp(9999*x))*exp(x). (End)
EXAMPLE
From Seiichi Manyama, Sep 18 2018: (Start)
n| a(n) can be divided into 4 parts for n > 1.
-+--------------------------------------------
1| 65 61
2| 9 605 9 601
3| 99 6005 99 6001
4| 999 60005 999 60001
(End)
MAPLE
A272067:=n->(10^n-1)^4: seq(A272067(n), n=0..15); # Wesley Ivan Hurt, Apr 19 2016
MATHEMATICA
(10^Range[0, 10] - 1)^4 (* Wesley Ivan Hurt, Apr 19 2016 *)
PROG
(Ruby)
(0..n).each{|i| p ('9' * i).to_i ** 4}
(PARI) a(n) = (10^n-1)^4; \\ Michel Marcus, Apr 19 2016
(Magma) [(10^n-1)^4 : n in [0..10]]; // Wesley Ivan Hurt, Apr 19 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 19 2016
STATUS
approved