login
Decimal expansion of Cp(4), the molar specific heat of an tetraatomic ideal gas at constant pressure, in J mol^-1 K^-1.
3

%I #31 Jan 11 2020 15:57:47

%S 4,5,7,2,9,5,2,8,9

%N Decimal expansion of Cp(4), the molar specific heat of an tetraatomic ideal gas at constant pressure, in J mol^-1 K^-1.

%C J mol^-1 K^-1.

%C Also the decimal expansion of Cv(5), the molar specific heat of a pentaatomic gas at constant volume.

%C The molar specific heat of an n-atomic gas at constant pressure and volume can be calculated respectively with the following formulae:

%C - Cv(n) = (n + 1/2) R;

%C - Cp(n) = (n + 3/2) R;

%C Where R = Cp(n) - Cv(n) = Cp(n) - Cp(n-1) = A081822 is IUPAC's value of the gas constant.

%H Kshitij Education, <a href="https://web.archive.org/web/20181010185239/http://www.kshitij-iitjee.com/molar-specific-heat-of-an-ideal-gas">Molar specific heat</a> [Wayback Machine link from _Felix Fröhlich_, Oct 10 2019]

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Heat_capacity">Heat capacity</a>.

%F Cp(4) = (4 + 3/2) * R = 11/2 * A081822.

%F Cp(4) = Cp(3) + R = Cv(4) + R = A272004 + A081822.

%e Cp(4) = Cv(5) = 45.7295289 J mol^-1 K^-1.

%Y Cf. A081822, A272001, A272002, A272003, A272004, A274984.

%K more,cons,nonn

%O 2,1

%A _Natan Arie Consigli_, Jul 09 2016