

A272005


Decimal expansion of Cp(4), the molar specific heat of an tetraatomic ideal gas at constant pressure, in J mol^1 K^1.


3




OFFSET

2,1


COMMENTS

J mol^1 K^1.
Also the decimal expansion of Cv(5), the molar specific heat of a pentaatomic gas at constant volume.
The molar specific heat of an natomic gas at constant pressure and volume can be calculated respectively with the following formulae:
 Cv(n) = (n + 1/2) R;
 Cp(n) = (n + 3/2) R;
Where R = Cp(n)  Cv(n) = Cp(n)  Cp(n1) = A081822 is IUPAC's value of the gas constant.


LINKS

Table of n, a(n) for n=2..10.
Kshitij Education, Molar specific heat
Wikipedia, Heat capacity .


FORMULA

Cp(4) = (4 + 3/2) * R = 11/2 * A081822.
Cp(4) = Cp(3) + R = Cv(4) + R = A272004 + A081822.


EXAMPLE

Cp(4) = Cv(5) = 45.7295289 J mol^1 K^1.


CROSSREFS

Cf. A081822, A272001, A272002, A272003, A272004, A274984.
Sequence in context: A057055 A177883 A245422 * A274984 A114343 A261418
Adjacent sequences: A272002 A272003 A272004 * A272006 A272007 A272008


KEYWORD

more,cons,nonn


AUTHOR

Natan Arie' Consigli, Jul 09 2016


STATUS

approved



